
307

Chapter 11

CVS versus BitKeeper—

A Comparison

Since the publication of the second edition of this book, a power-
ful new versioning system has risen called Bitkeeper, or BK/PRO,
to dominate at least certain areas of the OpenSource world.
BitKeeper was developed by Larry McVoy and is owned and sold
by BitMover, Inc. of San Francisco. BK/Pro is a scalable configu-
ration management system, supporting globally distributed
development, disconnected operation, compressed repositories,
change sets, and repositories as branches.

The distributed development feature allows each developer to get
his or her own personal repository, complete with revision his-
tory. This tool also handles moving changes between repositories.
SSH, RSH, BKD, HTTP, and/or SMTP can all be used as com-
munication transports between repositories. If both repositories
are local, the system just uses the file system. For example, the
following command would update from a remote system to a local
file system using ssh:

bk pull bitmover.com:/home/bk/bk-3.0.x

Change sets are a formalization of a patch file (i.e., one or more
changes to one or more files). Change sets also provide built-in
configuration management. The creation of a change set saves
the entire state of your repository, both what changed and what
didn’t, in less than a second.

Today, the Linux kernel itself is managed with BitKeeper and a
certain number of other OpenSource projects are switching to
this tool, also. It is therefore important to understand how to use
it when switching from CVS to BitKeeper.

81_6C11.p70 7/14/03, 10:13 AM307

Chapter 11308

A Sample BitKeeper Session
A sample session with BitKeeper running on the Linux kernel shows best where the differ-
ences are to our beloved CVS. The first step, as with CVS, is obviously to download BitKeeper
from http://www.bitmover.com/cgi-bin/download.cgi/.

Once your BitKeeper executable is in place, you need to obtain a local clone of the master
BitKeeper tree by using the following command:

bk clone bk://linux.bkbits.net/linux-2.4

Beware, however, as cvs co and bk clone are not completely functionally equivalent. While
cvs co checks out a working copy of a version of the repository—TOT or a version based on
a tag, date, or revision number—bk clone makes a copy of the repository itself. Cloning a
repository is like doing cp -r /path/to/cvs/repo/* ~/myrepo/ (not that you’d ever do
that!). bk clone creates a private instance of the repository from (and to) which you can
checkout, modify, merge, remove, and check in files.

Later on, when you just want to update your local cloned tree, you can just type the following
command:

bk pull

Here are some other examples of how you can work with files in your repository clone. For
each command, a description of the command is provided:

• bk get
filename

(Read-only checkout; similar to cvs export.)

• bk edit filename

(Read-write checkout; just like cvs co.)

• bk edit or bk get
(Checks out all files in the current directory.)

• bk -r edit or bk -r get
(Checks out entire repository.)

• bk clean

(Removes all unmodified files checked out with bk edit or bk get. Only operates on files in
the current directory.)

81_6C11.p70 7/14/03, 10:13 AM308

CVS versus BitKeeper—A Comparison 309

A Comparison of CVS and BitKeeper
The remainder of this chapter is devoted to showing you the differences between CVS and
BitKeeper. Table 11.1 shows how key features, such as file and directory renaming, GUI tools,
Web project tracking, upgrades, and others are implemented in both CVS and BitKeeper.

Table 11.1 Comparing Features in CVS and BitKeeper.

FEATURE OTHER SCM BITKEEPER BENEFIT
Inherently reliable No Yes No downtime. Your developers
through replication spend their time developing your

product, instead of waiting on a
server rebuild.

File/directory renaming Rarely Yes Increased productivity through well
organized source base.

BK/ProMerge™ No Yes Accurately reduces the number of
merge conflicts and eases resolution
of remaining conflicts.

True distributed system No Yes 100% productivity at geographi-
cally distributed sites at all times,
with no loss of functionality or
performance. Any user may modify
any file on any branch at any time,
without restriction.

Powerful GUI tools No Yes Dramatically simplifies debugging,
easier merges, improves check in
comments.

All changes are No Yes Easily remove bad changes, aids in
reproducible snapshots debugging, and aids in release

management.
Web project tracking Maybe Yes Allows management to track

projects and estimate release dates.
Optimal performance for No Yes Database replication means all all
users, local or remote developers, local or remote, get

optimal performance. BitKeeper
works well even over low band-
width, high latency links such as
modem or satellite links.

Disconnected (laptop) No Yes Productivity while traveling, at
home, at remote offices with partial/
slow network connectivity.

Peer-to-peer architecture No Yes Work may flow in any direction,
including “sideways” between two
developers without involving a
“master” copy.

(continued)

81_6C11.p70 7/14/03, 10:13 AM309

Chapter 11310

Table 11.1 Comparing Features in CVS and BitKeeper (continued).

FEATURE OTHER SCM BITKEEPER BENEFIT
Painless upgrades No Yes Upgrading server does not affect

developers.
Cross platform GUI Rarely Yes Increased productivity, no retraining.
Scripting Maybe Yes Easily customizable to your

environment.
Customizable reports Rarely Yes Accountability and status to/for

managers.
Automatic integrity No Yes Catches hardware/software prob-
checks lems promptly, while replicas are

still available.
Integrated bug tracking** Maybe Yes Link bugs to changes and vice versa.
Active roadmap Maybe Yes BitKeeper is actively developed by a

world class development team.
Follow on products for bug
tracking, sales tracking, project
management, and project hosting
are all actively being developed.

Comparing Commands and Syntax
As you are moving from CVS to BitKeeper there are some differences in commands and
command syntax that you should be aware of. I’ve included the following command com-
parison chart to help you work with both tools.

Style Conventions:

• Commands are styled in teletype.

• Additional information about a command is (enclosed in parentheses).

• User-defined command arguments are styled in italic.

cvs co directory or module bk clone bk://server:port/parent_repo parent_name
bk get or bk edit filename

Details:
BitKeeper performs filename expansion in the following order:

1. bk command dir

(When directory is specified and if dir/ exists, then implied file list is dir/SCCS/s.*)

2. bk command <NULL>

(When no directory or files are specified and if SCCS/ exists, then implied file list is
SCCS/s.*)

81_6C11.p70 7/14/03, 10:13 AM310

CVS versus BitKeeper—A Comparison 311

3. bk command [file1 file2 file3]

(When one or more files is specified, then each file name is converted to SCCS/s.file1
SCCS/s.file2, etc.)

Some commands accept an option –r flag. Here’s the implied behavior:

Bk command => bk command SCCS/s.*

Bk -r command => cd ‘bk root‘; bk sfiles | bk command

Bk -r. command => bk sfiles | bk command

Bk command dir => bk command dir

cd ~/mytree; cvs update cd ~/myclone; bk pull bk://server:port/reponame

Your private repository is a “child” of the “parent” repository that you cloned.

Use bk pull to update your repository with changes committed to the parent since the time
that you either created your clone or last pulled.If merge conflicts occur during the pull,

Bitkeeper will report them. Use bk resolve to resolve the conflicts.

cvs add [-kb] bk new [-b]

bk new adds and checks in one or more files to your repository, placing it under revision
control. Like cvs add, bk new is not recursive.

• bk new filename

(add a single file)

• bk sfiles -x | bk new -

(add multiple files [bk sfiles -x finds all files not under revision control])

• bk sfiles -x *.[ch] | bk new -

(add multiple files in current directory based on a pattern)

• bk new -b

(add a binary file, similar to cvs add -kb. Turns off keyword expansion)

To add many files in multiple directories, try this:

• cd ~/myrepo

• cp -r ~/to_add/* .

• bk sfiles -x . > /tmp/LIST

81_6C11.p70 7/14/03, 10:13 AM311

Chapter 11312

• vi /tmp/LIST

(remove whatever shouldn’t be added)

• bk new - < /tmp/LIST

Details:

• In CVS, to add new files and directories, you first cvs add the directory, then add each file,
then cvs commit the directory. In BitKeeper, bk new filename adds and checks in the
directory and file in a single step.

cvs commit -m “checkin comment” bk ci -y”checkin comment”
bk commit -y”changeset comment”
bk push

No space is allowed between the -y and the quoted comment.

Note: You are strongly encouraged to use bk citool for all of your check-ins and
commits. It’s cleaner, easier, and fosters better comments!

• bk ci -l -y"checkin comment" filename

(checks in changes and, afterward, does a bk edit filename)

• bk sfiles -U -c | bk ci -y"your checkin comments" -

(check in lots of files from the command line)

Checkins and changesets:

• Use bk ci to check in a change.

• Use bk commit to define and check in a changeset.

• Use bk pending to get a list of checkins that are not grouped in a changeset.

• It bears repeating: bk commit is for defining a changeset, NOT for checking in individual
changes.

• It’s okay to use bk ci to check in changes and, later, use the graphical bk citool to define
a changeset.

• Use bk push to propogate changeset to the parent repository.

Details:
What is the general “best-practice” guideline for a defining changeset? That is, when should
checkins be grouped into a changeset?

81_6C11.p70 7/14/03, 10:13 AM312

CVS versus BitKeeper—A Comparison 313

The simple answer is, whenever you need to exchange data with another repository you can
update your repository with bk pull or promote your changes to your repository’s parent with
bk push. Stated simply, you cannot pull or push without first grouping your checked-in changes
into a changeset.

cvs remove filename or directory bk rm or bk rmdir

The files and directories are moved to BitKeeper’s version of the CVS Attic, ~/myrepo/
BitKeeper/deleted.

n/a bk mv

bk mv has no corollary in CVS. bk mv renames the checked-out file (if any) as well as the
revision control file in the SCCS directory. Edited files are also renamed and then re-edited
(i.e., checked out), preserving any changes that are not yet checked in. bk mv operations
appear as a change when you commit the next changeset.

Moves propagate like content changes, that is, they are applied in the next pull or clone. Use
bk mvdir, not bk mv, to rename directories.

cvs diff bk diffs or bk difftool

View differences between your checked-out file and the latest or earlier committed version in
your repository.

Just like CVS, bk diffs can be used with a revision number, as in bk diffs -r1.2 filename.ext.

Details: How can I get a diff of changes between my checked-out, locally modified files and
what’s in the parent repository? The short answer is, you can’t—not without pulling an up-
date from the parent. That said, if the parent has changesets that you do not have and if both
the parent and child repository are on the same file system, you could get a meaningful diff
with bk treediff.

cvs history bk cmdlog [-a]

Displays the history of repository-level commands run in the repository for the current direc-
tory. Repository level commands are clone, commit, export, pull, and push.

cvs import bk import or “bk extras | bk new -”

See cvs add / bk new above.

81_6C11.p70 7/14/03, 10:13 AM313

Chapter 11314

cvs log bk prs or bk changes

bk prs shows the revision summary for a single file or directory of files. It is not recursive.

bk changes shows the changeset history for the entire repository. Again, this command oper-
ates on the entire repository, even if you cd deep into your tree and specify a single file.

cvs release filename or directory bk ci -y”comment” filename or directory
bk clean

bk edit checks out and locks a file for modification. To release the lock, check in your
changes and run bk clean to remove the file. If don’t want to keep your modifications, use
bk unedit filename to unlock the file (use with caution!).

Details:

• A checkout “lock” blocks you from running bk edit on the same file more than once,
thereby avoiding overwriting uncommitted changes with a new checkout.

cvs status bk status [-v]

Analyzes the status of your checked-out tree. Verbose mode, -v, lists the parent repository,
users, files not under revision control (extras), files modified and not checked in, and files
with checked-in-but-not-committed deltas.

cvs status | grep “nothing bk extras or bk status –v
known about”

Finds files that are not under revision control.

81_6C11.p70 7/14/03, 10:13 AM314

